
PRACTICE FINAL (ADIREDJA) - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) The fact that this limit does not exist shows that |sin(x)| is not differentiable
at π. In fact, it is continuous at π as a composition of continuous functions!

(b) The integral is 0 because the function is an odd function.

(c) f is minimized at 1 ! f ′(x) = x2 − 1, so f ′(1) = 0 and f ′′(1) > 0, so by
the second derivative test, f(1) is a minimum.

(d) Yes you can! Take lns of both sides and write cos as 1
1

cos(x)

, and use l’Hopital’s

rule.

(e) Yes you can, by the extreme value theorem!

2. (a)

∫
1− x√
1− x2

dx =

∫
1√

1− x2
dx− x√

1− x2
dx = sin−1(x) +

√
1− x2 + C

where in the last step, we used the substitution u = 1− x2.
(b) ∆x = 2

n , xi = a+ i∆x = 2i
n
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∫ 2

0

2− x2dx = lim
n→∞

n∑
i=1

f(xi)∆x

= lim
n→∞

n∑
i=1

(
2−

(
2i

n

)2
)

2

n

= lim
n→∞

n∑
i=1

4

n
−

n∑
i=1

8i2

n3

= lim
n→∞

4

n

n∑
i=1

1− 8

n3

n∑
i=1

i2

= lim
n→∞

4

n
n− 8

n3
n(n+ 1)(2n+ 1)

6

= lim
n→∞

4− 8

6

(n+ 1)(2n+ 1)

n2

=4− 4

3
(2)

=4− 8

3

=
4

3

(c)∫ 2

−2
f(x)dx =

∫ 0

−2
x+ 2dx+

∫ 2

0

√
4− x2dx =

22

2
+

1

4
π22 = 2 + π

Where we used the fact that the first integral represents the area of a triangle
with base 2 and height 2, and the second integral represents the area of a
quarter circle of radius 2.

3. (a) (i)

lim
x→2

x2 − 4x+ 7 = 4− 8 + 7 = 3

(ii)

lim
x→2

x2 = 4

(b) (i) Let f(x) = x2 − 4x+ 7

Part I: Finding δ

1) |f(x)− 3| =
∣∣x2 − 4x+ 7− 3

∣∣ =
∣∣x2 − 4x+ 4

∣∣ = |x− 2|2

2) |x− 2|2 < ε implies |x− 2|2 <
√
ε

3) Let δ =
√
ε



PRACTICE FINAL (ADIREDJA) - SOLUTIONS 3

Part II: Showing your δ works

1) Let ε > 0 be given. Let δ =
√
ε, and suppose 0 < |x− 2| < δ.

Then |x− 2| <
√
ε

2) Then |f(x)− 3| = |x− 2|2 < (
√
ε)2 = ε

3) Hence, if 0 < |x− 2| < δ, then |f(x)− 3| < ε

(ii) Let f(x) = x2

Part I: Finding δ

1) |f(x)− 4| =
∣∣x2 − 4

∣∣ = |x− 2| |x+ 2|
2) If |x− 2| < 1, then −1 < x − 2 < 1, so 1 < x + 2 < 5, so
|x+ 2| < 5

2) So |f(x)− 4| = |x− 2| |x+ 2| < 5 |x− 2| < ε implies |x− 2| <
ε
5

3) Let δ = min
{

1, ε5
}

Part II: Showing your δ works

1) Let ε > 0 be given. Let δ = min
{

1, ε3
}

, and suppose 0 <
|x− 2| < δ. Then |x− 2| < ε

5 and |x+ 2| < 5

2) Then |f(x)− 4| = |x− 2| |x+ 2| < 5 |x− 2| = 5
(
ε
5

)
= ε

3) Hence, if 0 < |x− 2| < δ, then |f(x)− 4| < ε

4. (a)

lim
x→0

tan2(x)

x2
=

H= lim
x→0

tan(x) sec2(x)

x
= lim
x→0

tan(x)

x

=

H= lim
x→0

sec2(x) = 1

Where H means l’Hopital’s rule. Also, in the second step, we used the fact
that limx→0 sec2(x) = 1, so it doesn’t affect our limit!

(b)

lim
x→∞

x√
x2 + 1

= lim
x→∞

x
√
x2
√

1 + 1
x2

= lim
x→∞

x

x
√

1 + 1
x2

= lim
x→∞

1√
1 + 1

x2

= 1

Where we used the fact that
√
x2 = |x| = x (since x > 0)

(c) Notice that if you let f(x) =
∫ 3x

x
t2 sin(t)dt, then the limit is just limh→0

f(x+h)−f(x)
h =

f ′(x). So the answer is: f ′(x) = 3(3x)2 sin(3x)− x2 sin(x) .

You could also have used l’Hopital’s rule, but be careful that you’re differen-
tiating with respect to h and not with respect to x here!!! (so

∫ 3x

x
t2 sin(t)dt

is a CONSTANT in this case!)
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5. - Domain: x 6= 0
- Asymptotes: y = 1 (at ±∞, since limx→±∞ e

1
x = 1), x = 0 (since

limx→0+ e
1
x =∞)

- f ′(x) = −1
x2 e

1
x , no critical points, Decreasing on (−∞, 0) and on (0,∞)

- No local extrema
- f ′′(x) = 2x+1

x4 e
1
x , Concave down on (−∞,− 1

2 ), Concave up on (− 1
2 , 0) and

on (0,∞)
- Inflection point: (− 1

2 , e
−2)

- Graph: Check it with your calculator
- Range: [0, 1) ∪ (1,∞) (look at your graph to convince yourself of this!)

6. (a) 1) Want to minimize
√
x2 +

(
y − 1

2

)2
, same as minimizing x2+

(
y − 1

2

)2
,

but y = x2 − 4, so f(x) = x2 +
(
x2 − 9

2

)2
2) Notice the symmetry in your picture! That’s why we set our constraint

to be x > 0

3) f ′(x) = 2x + 2
(
x2 − 9

2

)
(2x) = 2x

(
2x2 − 8

)
, f ′(x) = 0 ⇔ x = 0

or x = ±2. But since x > 0, we only care about x = 2

4) By FDTAEV, x = 2 is an absolute minimum of f . and notice that
f(2) = 0, so our answer is: (2, 0) and (−2, 0) (by symmetry)

(b) Look at your picture in (a), and notice the symmetry again! By symmetry, we
only need to focus on the right hand side of the picture. The line connecting
(0, 12 ) and (2, 0) has equation y = −x4 + 1

2 , so the area of the right hand side
is:

A+ =

∫ 2

0

(
−x

4
+

1

2

)
− (x2 − 4)dx =

∫ 2

0

−x2 − x

4
+

9

2
dx =

35

6

So our answer is A = 2A+ = 35
3

7. Consider f(t) and g(t), the position functions of the runners. Define h(t) = f(t)− g(t) .
Then h(0) = f(0) − g(0) = 0 (since the runners started at the same place), and
h(T ) = f(T ) − g(T ) = 0, where T is the ending time (we know f(T ) = g(T )
because the race ended in a tie). But then h(0) = h(T ), so by Rolle’s theorem,
h′(c) = 0 for some c in (0, T ). But h′(c) = f ′(c)− g′(c), so f ′(c)− g′(c) = 0,

so f ′(c) = g′(c), but this says precisely that at some point in time (namely at c),
the two runners had the same speed!


