PRACTICE FINAL (ADIREDJA) - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) The fact that this limit does not exist shows that $|\sin (x)|$ is not differentiable at π. In fact, it is continuous at π as a composition of continuous functions!
(b) The integral is 0 because the function is an odd function.
(c) f is minimized at $1!f^{\prime}(x)=x^{2}-1$, so $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)>0$, so by the second derivative test, $f(1)$ is a minimum.
(d) Yes you can! Take lns of both sides and write \cos as $\frac{1}{\frac{1}{\cos (x)}}$, and use l'Hopital's rule.
(e) Yes you can, by the extreme value theorem!
2. (a)
$\int \frac{1-x}{\sqrt{1-x^{2}}} d x=\int \frac{1}{\sqrt{1-x^{2}}} d x-\frac{x}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x)+\sqrt{1-x^{2}}+C$
where in the last step, we used the substitution $u=1-x^{2}$.
(b) $\Delta x=\frac{2}{n}, x_{i}=a+i \Delta x=\frac{2 i}{n}$

$$
\begin{aligned}
\int_{0}^{2} 2-x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2-\left(\frac{2 i}{n}\right)^{2}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n}-\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n} 1-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} n-\frac{8}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
& =\lim _{n \rightarrow \infty} 4-\frac{8}{6} \frac{(n+1)(2 n+1)}{n^{2}} \\
& =4-\frac{4}{3}(2) \\
& =4-\frac{8}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

(c)

$$
\int_{-2}^{2} f(x) d x=\int_{-2}^{0} x+2 d x+\int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{2^{2}}{2}+\frac{1}{4} \pi 2^{2}=2+\pi
$$

Where we used the fact that the first integral represents the area of a triangle with base 2 and height 2 , and the second integral represents the area of a quarter circle of radius 2 .
3. (a) (i)

$$
\lim _{x \rightarrow 2} x^{2}-4 x+7=4-8+7=3
$$

(ii)

$$
\lim _{x \rightarrow 2} x^{2}=4
$$

(b) (i) Let $f(x)=x^{2}-4 x+7$

Part I: Finding δ

1) $|f(x)-3|=\left|x^{2}-4 x+7-3\right|=\left|x^{2}-4 x+4\right|=|x-2|^{2}$
2) $|x-2|^{2}<\epsilon$ implies $|x-2|^{2}<\sqrt{\epsilon}$
3) Let $\delta=\sqrt{\epsilon}$

Part II: Showing your δ works

1) Let $\epsilon>0$ be given. Let $\delta=\sqrt{\epsilon}$, and suppose $0<|x-2|<\delta$. Then $|x-2|<\sqrt{\epsilon}$
2) Then $|f(x)-3|=|x-2|^{2}<(\sqrt{\epsilon})^{2}=\epsilon$
3) Hence, if $0<|x-2|<\delta$, then $|f(x)-3|<\epsilon$
(ii) Let $f(x)=x^{2}$

Part I: Finding δ

1) $|f(x)-4|=\left|x^{2}-4\right|=|x-2||x+2|$
2) If $|x-2|<1$, then $-1<x-2<1$, so $1<x+2<5$, so $|x+2|<5$
3) So $|f(x)-4|=|x-2||x+2|<5|x-2|<\epsilon$ implies $|x-2|<$ $\frac{\epsilon}{5}$
4) Let $\delta=\min \left\{1, \frac{\epsilon}{5}\right\}$

Part II: Showing your δ works

1) Let $\epsilon>0$ be given. Let $\delta=\min \left\{1, \frac{\epsilon}{3}\right\}$, and suppose $0<$ $|x-2|<\delta$. Then $|x-2|<\frac{\epsilon}{5}$ and $|x+2|<5$
2) Then $|f(x)-4|=|x-2||x+2|<5|x-2|=5\left(\frac{\epsilon}{5}\right)=\epsilon$
3) Hence, if $0<|x-2|<\delta$, then $|f(x)-4|<\epsilon$
4. (a)

$$
\lim _{x \rightarrow 0} \frac{\tan ^{2}(x)}{x^{2}} \overline{\bar{H}}=\lim _{x \rightarrow 0} \frac{\tan (x) \sec ^{2}(x)}{x}=\lim _{x \rightarrow 0} \frac{\tan (x)}{x} \overline{\bar{H}}=\lim _{x \rightarrow 0} \sec ^{2}(x)=1
$$

Where H means l'Hopital's rule. Also, in the second step, we used the fact that $\lim _{x \rightarrow 0} \sec ^{2}(x)=1$, so it doesn't affect our limit!
(b)
$\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{x}{x \sqrt{1+\frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}}=1$
Where we used the fact that $\sqrt{x^{2}}=|x|=x($ since $x>0)$
(c) Notice that if you let $f(x)=\int_{x}^{3 x} t^{2} \sin (t) d t$, then the limit is just $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$ $f^{\prime}(x)$. So the answer is: $f^{\prime}(x)=3(3 x)^{2} \sin (3 x)-x^{2} \sin (x)$.

You could also have used l'Hopital's rule, but be careful that you're differentiating with respect to h and not with respect to x here!!! (so $\int_{x}^{3 x} t^{2} \sin (t) d t$ is a CONSTANT in this case!)
5. - Domain: $x \neq 0$

- Asymptotes: $y=1$ (at $\pm \infty$, since $\lim _{x \rightarrow \pm \infty} e^{\frac{1}{x}}=1$), $x=0$ (since $\left.\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x}}=\infty\right)$
- $f^{\prime}(x)=\frac{-1}{x^{2}} e^{\frac{1}{x}}$, no critical points, Decreasing on $(-\infty, 0)$ and on $(0, \infty)$
- No local extrema
- $f^{\prime \prime}(x)=\frac{2 x+1}{x^{4}} e^{\frac{1}{x}}$, Concave down on $\left(-\infty,-\frac{1}{2}\right)$, Concave up on $\left(-\frac{1}{2}, 0\right)$ and on $(0, \infty)$
- Inflection point: $\left(-\frac{1}{2}, e^{-2}\right)$
- Graph: Check it with your calculator
- Range: $[0,1) \cup(1, \infty)$ (look at your graph to convince yourself of this!)

6. (a) 1) Want to minimize $\sqrt{x^{2}+\left(y-\frac{1}{2}\right)^{2}}$, same as minimizing $x^{2}+\left(y-\frac{1}{2}\right)^{2}$, but $y=x^{2}-4$, so $f(x)=x^{2}+\left(x^{2}-\frac{9}{2}\right)^{2}$
2) Notice the symmetry in your picture! That's why we set our constraint to be $x>0$
3) $f^{\prime}(x)=2 x+2\left(x^{2}-\frac{9}{2}\right)(2 x)=2 x\left(2 x^{2}-8\right), f^{\prime}(x)=0 \Leftrightarrow x=0$ or $x= \pm 2$. But since $x>0$, we only care about $x=2$
4) By FDTAEV, $x=2$ is an absolute minimum of f. and notice that $f(2)=0$, so our answer is: $(2,0)$ and $(-2,0)$ (by symmetry)
(b) Look at your picture in (a), and notice the symmetry again! By symmetry, we only need to focus on the right hand side of the picture. The line connecting $\left(0, \frac{1}{2}\right)$ and $(2,0)$ has equation $y=-\frac{x}{4}+\frac{1}{2}$, so the area of the right hand side is:
$A^{+}=\int_{0}^{2}\left(-\frac{x}{4}+\frac{1}{2}\right)-\left(x^{2}-4\right) d x=\int_{0}^{2}-x^{2}-\frac{x}{4}+\frac{9}{2} d x=\frac{35}{6}$
So our answer is $A=2 A^{+}=\frac{35}{3}$
7. Consider $f(t)$ and $g(t)$, the position functions of the runners. Define $h(t)=f(t)-g(t)$. Then $h(0)=f(0)-g(0)=0$ (since the runners started at the same place), and $h(T)=f(T)-g(T)=0$, where T is the ending time (we know $f(T)=g(T)$ because the race ended in a tie). But then $h(0)=h(T)$, so by Rolle's theorem, $h^{\prime}(c)=0$ for some c in $(0, T)$. But $h^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$, so $f^{\prime}(c)-g^{\prime}(c)=0$, so $f^{\prime}(c)=g^{\prime}(c)$, but this says precisely that at some point in time (namely at c), the two runners had the same speed!
